PROJET DRAINAGEING – PHASE I

ÉTUDE DU VIEILLISSEMENT DES GÉOTEXTILES-FILTRES UTILISÉS EN TRANCHÉES DRAINANTES, SUR SITE EXPERIMENTAL DANS LE TRIÈVES

ANNEXES

Février 2010

VERSTAEVEL MATTHIEU, MÉRIAUX PATRICE
Cemagref Aix-en-Provence, Unité Ouvrages Hydrauliques et Hydrologie (OHAX)
FAURE YVES-HENRI (LTHE – ÉQUIPE TRANSPORE)
SOMMAIRE DES ANNEXES

Annexe 1 : Devis des enregistreurs de pression ... 3
Annexe 4 : Fiche technique du HATE 43 144 , d’après LEROY J. (1993) 6
Annexe 7 : Mesures des débits de la tranchée 1 sur la période d’étude 1993-1999 9
Annexe 8 : Mesures des débits de la tranchée 2 sur la période d’étude 1993-1999 9
Annexe 9 : Mesures des débits de la tranchée 3 sur la période d’étude 1993-1999 10
Annexe 10 : Mesures des débits de la tranchée 4 sur la période d’étude 1993-1999 10
Annexe 11 : Mesures des débits de la tranchée 5 sur la période d’étude 1993-1999 ... 11
Annexe 12 : Levé topographique du site d’étude réalisé le 5 juin 2009 12
Annexe 13 : Débits de la tranchée 1 et pluviométrie journalière sur la période juillet 2008-décembre 2009 13
Annexe 14 : Débits de la tranchée 1 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009 ... 13
Annexe 15 : Débits de la tranchée 2 et pluviométrie journalière sur la période juillet 2008-décembre 2009 14
Annexe 16 : Débits de la tranchée 2 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009 ... 14
Annexe 17 : Débits de la tranchée 3 et pluviométrie journalière sur la période juillet 2008- décembre 2009 15
Annexe 18 : Débits de la tranchée 3 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009 ... 15
Annexe 19 : Débits de la tranchée 4 et pluviométrie journalière sur la période juillet 2008- décembre 2009 16
Annexe 20 : Débits de la tranchée 4 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009 ... 16
Annexe 21 : Débits de la tranchée 5 et pluviométrie journalière sur la période juillet 2008- décembre 2009 17
Annexe 22 : Débits de la tranchée 5 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009 ... 17
Annexe 23 : Débits de la tranchée 6 et pluviométrie journalière sur la période juillet 2008- décembre 2009 18
Annexe 24 : Débits de la tranchée 6 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009 ... 18
Annexe 25 : Rapport détaillé de l’inspection télévisuelle des collecteurs drainants de fond de tranchées du 29 juin 2009 .. 19
Annexe 27 : Libellé des prix du projet de réouverture des tranchées drainantes ; partie génie civil, d’après BONNIOT M. (2009) .. 28
Annexe 29 : Evaluation des coûts des essais du projet de réouverture des tranchées drainantes ... 33
Annexe 30 : Courbes granulométriques de toutes les tranchées de 37
juin 2009 ... 19
Annexe 31 : Courbes granulométriques de toutes les tranchées de 37
juillet 2009 ... 37
Annexe 32 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 1 38
Annexe 33 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 2 38
Annexe 34 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 3 39
Annexe 35 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 4 39
Annexe 36 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 5 40
Annexe 37 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 6 40
Annexe 1 : Devis des enregistreurs de pression

A l’attention de Monsieur Matthieu VERSTAEVEL

Reignac sur Indre le , mardi 3 novembre 2009

Monsieur,

Nous vous prions de trouver ci-dessous notre offre de prix correspondant à votre demande.

<table>
<thead>
<tr>
<th>Item</th>
<th>Code article</th>
<th>DESIGNATION</th>
<th>Prix unitaire</th>
<th>Prix net</th>
<th>Cité</th>
<th>TOTAL HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11110102</td>
<td>Sonde MiniDIVER, entr. msc. eau+7°C, gamme 0-10m.</td>
<td>585,00</td>
<td>5,0</td>
<td>585,25</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>11115501</td>
<td>Sonde BandDIVER, entr. P.A.+1°C (gamme 0-1,5m)</td>
<td>429,00</td>
<td>5,0</td>
<td>407,55</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>11111003</td>
<td>Adaptateur de lecture/programmation PC(Driver)/DIVER.</td>
<td>220,00</td>
<td>0,0</td>
<td>220,00</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>11111114</td>
<td>Logiciel Diver-Office (+DriverPocket-PC Reader)</td>
<td>0,00</td>
<td>0,0</td>
<td>0,00</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1111122</td>
<td>Câble synthétique (Vedran) de suspension Diver, L.50m.</td>
<td>47,00</td>
<td>0,0</td>
<td>47,00</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1111121</td>
<td>Serre-câbles pour câble inox Ø 1 mm (sol de 10p)</td>
<td>50,00</td>
<td>0,0</td>
<td>50,00</td>
<td>1</td>
</tr>
</tbody>
</table>

Sous-Total Hors Taxes : 3 556,80
Emballage : 2,00
Port, incluant frais de gestion : 36,67
TOTAL Hors Taxes : 3 595,47
T.V.A (19,6%) : 704,71

TOTAL à PAYER TTC : 4 300,18 €

Cette offre de prix est valable curant : Deux mois
Départ livraison : 2 à 3 semaines
Mode de transport : Transport Routier
Mode de Paiement : Chèque ou virement à 30 jours fin de mois

Commentaires :
Cette proposition annule et remplace la précédente datée du 22 octobre 2009.
Vous remerciant de votre confiance, je vous prie d'agréer Monsieur, mes salutations distinguées.

BP Benoît PARIS

Fevrier 2010
Annexe 4 : Fiche technique du HATE 43 144, d’après LEROY J. (1993)
Annexe 7 : Mesures des débits de la tranchée 1 sur la période d’étude 1993-1999

Annexe 8 : Mesures des débits de la tranchée 2 sur la période d’étude 1993-1999
Annexe 9 : Mesures des débits de la tranchée 3 sur la période d’étude 1993-1999

Annexe 10 : Mesures des débits de la tranchée 4 sur la période d’étude 1993-1999
Annexe 11 : Mesures des débits de la tranchée 5 sur la période d’étude 1993-1999

Annexe 11 : Mesures des débits de la tranchée 6 sur la période d’étude 1993-1999
Annexe 12 : Levé topographique du site d’étude réalisé le 5 juin 2009
Annexe 13 : Débits de la tranchée 1 et pluviométrie journalière sur la période juillet 2008-décembre 2009

Annexe 14 : Débits de la tranchée 1 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009
Annexe 15 : Débits de la tranchée 2 et pluviométrie journalière sur la période juillet 2008-décembre 2009

Annexe 16 : Débits de la tranchée 2 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009
Annexe 17 : Débits de la tranchée 3 et pluviométrie journalière sur la période juillet 2008- décembre 2009

Annexe 18 : Débits de la tranchée 3 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009
Annexe 19 : Débits de la tranchée 4 et pluviométrie journalière sur la période juillet 2008- décembre 2009

Annexe 20 : Débits de la tranchée 4 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008–décembre 2009
Annexe 21 : Débits de la tranchée 5 et pluviométrie journalière sur la période juillet 2008- décembre 2009

Annexe 22 : Débits de la tranchée 5 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009
Annexe 23 : Débits de la tranchée 6 et pluviométrie journalière sur la période juillet 2008- décembre 2009

![Graphique des débits et pluviométrie](image)

Annexe 24 : Débits de la tranchée 6 et pluviométrie cumulée sur une semaine avant la mesure, période juillet 2008-décembre 2009

![Graphique des débits et pluviométrie cumulée](image)
Annexe 25 : Rapport détaillé de l’inspection télévisuelle des collecteurs drainants de fond de tranchées du 29 juin 2009

COMPTE RENDU DE L’EXAMEN TELEVISE DES DRAINS DES TRANCHÉES DE ROISSARD

LE 29 JUIN 2009

L’observation du drain débute par son exutoire, la visite se fait donc de l’aval vers l’amont.

Le présent compte-rendu, élaboré suite à une analyse de la vidéo fournie par TEDECO, complète celui établi par cette société quelques jours après son intervention.

Attention, en ce qui concerne les distances, elles sont mesurées par rapport au centre du regard, et non par rapport au début du drain. De plus, la mesure est faite avec la distance de câble déroulé, ce qui apporte une légère erreur. En effet, le camion n’étant pas juste à côté de chaque regard (zone non circulable), le câble est tiré jusqu’au regard, il n’est pas parfaitement tendu, ce qui implique une petite surestimation des distances. À cela, il s’ajoute encore le fait que nous avons rencontré quelques problèmes pour faire avancer le robot, ce qui a nécessité de tirer sur ce câble pour décoincer l’appareil et a provoqué encore une incertitude sur les distances de l’ordre d’une trentaine de centimètres (information apportée par TEDECO).

Sur les fiches par tranchée ci-après, l’orientation du drain est indiquée : le côté amont correspond au côté de la prairie, le côté aval à celui du marécage.
TRANCHEE 1

<table>
<thead>
<tr>
<th>Longueur totale inspectée : 13,40 mètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Début de la séquence à : 0 min 0 sec</td>
</tr>
<tr>
<td>Côté amont : droite de l’image</td>
</tr>
</tbody>
</table>

Observations :

- 2,30 m : On passe du raccord PVC au drain proprement dit, pas de problème au niveau du joint. Le drain a été fendu en voûte pour faciliter l’emboîtement.

- 2,40 m : Protubérance sur le fond du drain, témoin d’un déplacement de ce dernier, avec dépôts de fines à l’amont.

- 8,20 m : Raccord en PVC entre deux éléments de drain, pas de problème de joint.

- 10,40 m : Présence de radicelles en radier de la cunette.

- 10,90 m : Observation d’une petite queue de rat (racine), qui semble entrer à 11m30 par une crépine.

- 13,40 m : Extrémité du drain, pas ou plus de bouchon en fin de drain, on observe un éboulement de la grave à l’intérieur du drain, cette dernière semble plutôt propre.

Synthèse :

Le drain est propre, peu d’eau dans la cunette et peu de fines. Très peu de calcification au niveau des crépines.
<table>
<thead>
<tr>
<th>TRANCHEÉ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longueur totale inspectée : 13,80 mètres</td>
</tr>
</tbody>
</table>

| Début de la séquence à : 3 min 22 sec | Fin de la séquence à : 10 min 47 sec |
| Côté amont : gauche de l’image | Côté aval : droite de l’image |

Observations :

- 1,90 m : On passe du raccord PVC au drain à proprement dit, pas de problème au niveau du joint.

- 2,20 m : Calcification des parois du drain des deux côtés sur deux tiers de la hauteur (seule la voûte est épargnée). Sur 70 centimètres de longueur.

- 2,90 m : Calcification plus faible des parois, ici seules les crépines sont touchées. Sur environ 1,50 mètres.

- 4,40 m : Calcification des parois encore plus faible. Sur 70 centimètres environ.

- 5,10 m : Presque plus de calcification des parois.

- 6,30 m : Nouvelle calcification assez importante mais uniquement côté amont (gauche de l’image). Sur 1,40 mètre.

- 7,80 m : Raccord en PVC entre deux drains, pas de problème de joint, plus début de calcification assez importante côté aval uniquement (droite de l’image). Sur 60 centimètres environ.

- 8,40 m : A nouveau, calcification des deux côtés du drain (semblant remonter plus haut côté amont), seule la voûte est épargnée. De plus, fort dépôt dans le fond du drain. Sur 3 mètres.

- 11,40 m : Presque plus de dépôt au fond du drain, et absence de calcification : le drain est à nouveau très propre.

- 12,90 m : Petite retenue d’eau sûrement due à un changement de pente (on passe à une pente négative) sur 70 centimètres environ.

- 13,60 m : On revient à une pente positive.

- 13,80 m : Présence d’un « bouchon », formé par un repli du géotextile, en extrémité amont de drain, Il est en parfait état.

Synthèse :

On observe des zones de calcification, soit d’un côté du drain ou de l’autre, ou soit des deux. Plus globalement, jusque vers 11,40 mètres, on remarque un dépôt continu de fines en fond du drain (avec tout de même une forte augmentation de ce dépôt entre 8,40 et 11,40 mètres) ainsi qu’un écoulement important d’eau sur la cunette. A partir de ces
11,40 mètres, il n’y a quasiment plus de dépôt en fond de cunette, et plus de calcification.

TRANCHEE 3

<table>
<thead>
<tr>
<th>Longueur totale inspectée : 13,70 mètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Début de la séquence à : 10 min 48 sec</td>
</tr>
<tr>
<td>Côté amont : gauche de l’image</td>
</tr>
</tbody>
</table>

Observations :

- **1,90 m :** On passe du raccord PVC au drain à proprement dit, pas de problème au niveau du joint.
- **2,70 m :** Calcification assez importante des deux côtés, seule la voûte est épargnée.
- **3,10 m :** Zone avec des arrivées nettes d’eau dont certaines sous pression (trajectoire parabolique) par les crépines du côté aval (droite de l’image).
- **3,20 m :** Zone d’arrivée d’eau par les crépines.
- **4,10 m :** Fin de calcification sur la paroi aval du drain (côté droit de l’image). Et diminution de la calcification du côté amont. Dépôt de fines en radier de la cunette.
- **5,40 m :** Le côté amont est maintenant très peu calcifié.
- **6,70 m :** Zone d’infiltration de racines par les crépines.
- **7,10 m :** Zone avec plus d’eau au fond du drain (on a une pente d’environ -1%), zone où la pente est dans le mauvais sens, sur 70 centimètres.
- **7,80 m :** raccord entre deux morceaux du drain, pas de problème au joint. La pente du drain redevient positive. Début d’une forte zone de dépôt. Sur 5,90 mètre (jusqu’à la fin du drain).
- **9,80 m :** Nouvelle zone où la pente est négative, sur 30 centimètres.
- **10,10 m :** La pente redevient positive.
- **13,70 m :** Extrémité du drain, pas ou plus de « bouchon » au bout, la grave est entrée dans le drain, elle semble propre.

Synthèse :

Ecoulement important sur la cunette, avec une zone préférentielle d’entrée d’eau par le côté aval, vers 3 m. Le dépôt de matériaux en radier commence dès le début du drain, avec une forte accentuation à partir de 7,80 mètres. On observe également des petites racines qui régulièrement s’infilrent par les crépines, sans toutefois avoir provoqué de dommages. Enfin, on peut remarquer deux zones où la pente est négative, ce qui
TRANCHÉE 4

Longueur totale inspectée : 14,00 mètres

Début de la séquence à : 15 min 38 sec Fin de la séquence à : 19 min 36 sec

Côté amont : droite de l’image Côté aval : gauche de l’image

Observations :
- 1,90 m : On passe du raccord PVC au drain à proprement dit, pas de problème au niveau du joint. Calcification des deux côtés du drain, seule la voûte est épargnée. Radier de la cunette masqué par un dépôt de fines.
- 3,90 m : Diminution de la calcification côté aval (à gauche de l’image)
- 5,70 m : Pratiquement plus de calcification côté aval du drain (à gauche de l’image).
- 7,20 m : Changement de pente, elle devient négative, ce qui implique une accumulation d’eau. Sur 20 centimètres
- 7,40 m : La pente redevient positive.
- 8,10 m : Raccord entre deux morceaux de drain, pas de problème au niveau du joint.
- 8,40 m : Accumulation d’eau.
- 9,90 m : Arrêt de la calcification côté amont du drain (à droite de l’image), elle aura persisté 9,90 mètres. Fin du dépôt en radier, presque plus d’écoulement d’eau non plus.
- 10,60 m : Légère calcification côté aval du drain. Sur 80 centimètres.
- 11,40 m : Fin de la calcification du côté aval du drain (à gauche de l’image).
- 14,00 m : Fin du drain, « bouchon » réalisé avec le propex, il est en bon état. On voit tout de même un début de calcification sur le bas du bouchon.

Synthèse :
Ecoulement significatif d’eau sur la cunette jusque vers 10 m. Sur les 9,90 premiers mètres, on observe un dépôt en fond de drain constant, avec une accumulation au niveau du changement de pente (7,20 mètres). On peut également remarquer qu’à partir de 9,90 mètres, le drain devient propre (absence de dépôt et presque plus de calcification). Enfin, des petites racines s’infiltrent régulièrement par les crépines.
TRANCHEE 5

Longueur totale inspectée : 10,90 mètres

Début de la séquence à : 19 min 37 sec Fin de la séquence à : 31 min 25

Côté amont : droite de l’image Côté aval : gauche de l’image

Observations :
- 3,00 m : On passe du raccord PVC au drain à proprement dit, pas de problème au niveau du joint. Début de dépôt en fond du drain.
- 3,30 m : Légère calcification côté amont du drain (à droite de l’image), sur 1,30 mètres.
- 4,60 m : Fin de la calcification du côté amont.
- 7,00 m : Début de calcification côté amont du drain (à droite de l’image). Avec augmentation du dépôt et de la quantité d’eau au fond du drain.
- 7,60 m : Début de calcification importante des deux côtés, seule la voûte est épargnée. Augmentation encore du dépôt au fond du drain.
- 8,10 m : La voûte est maintenant également touchée par une calcification importante.
- 8,80 m : Raccord entre deux morceaux de drain, pas de problème au niveau du joint. La quantité de dépôt au fond du drain a encore augmenté. La voûte ne semble presque plus calcifiée.
- 10,10 m : Changement de pente du drain, elle devient négative.
- 10,90 m : La pente est toujours négative, la visite s’arrête, le robot ne peut plus avancer, il y a trop de dépôt au fond du drain.

Synthèse :
Ecoulement modéré d’eau. Au fur et à mesure de la progression (de l’aval vers l’amont), le dépôt est de plus en plus important dans le fond du drain, jusqu’à bloquer le robot à 10,90 m (l’importance de ce dépôt est peut-être à mettre en relation avec la plus grande ouverture de filtration du géotextile d’enrobage de cette tranchée, tout au moins par rapport aux tranchées 3 et 4). On observe également que des petites racines passent régulièrement dans les crépines. A certains endroits, la calcification est très importante, jusqu’à toucher sévèrement la voûte.
TRANCHÉE 6

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longueur totale inspectée :</td>
</tr>
<tr>
<td>Début de la séquence à :</td>
</tr>
<tr>
<td>Fin de la séquence à :</td>
</tr>
<tr>
<td>Côté amont : gauche de l’image</td>
</tr>
<tr>
<td>Côté aval : droite de l’image</td>
</tr>
</tbody>
</table>

Observations :
- 2,70 m : Raccord géocomposite tube PVC, on observe un calcification importante à l’intérieur du géocomposite, avec un net flux d’eau en bas de ce dernier.

Le 14 août 2009

Rédaction : Matthieu Verstaevel

Relecture et compléments : Patrice Mériaux

- Puissance brute du moteur : 12 kW / 16.1 cv
- Puissance nette du moteur : ISO 9249 : 11.7 kW / 15.7 cv
- Masse opérationnelle : EC15B XR : 1479 - 1603 kg
 EC15B XT : 1539 - 1718 kg
 EC15B XTV : 1637 - 1811 kg
- Capacités godets : 16 - 601
- Profondeur de Fouille Maximum : 2200 - 2520 mm
- Système hydraulique Load Sensing pour des commandes très précises dans toutes les conditions de charge.
- Châssis inférieur à réglage hydraulique pour une meilleure stabilité et un meilleur accès aux chantiers étroits, ou châssis inférieur fixe, largeur 980 mm (EC15B XTV seulement).
- Mouvements de cavage simultanés et grande vitesse d’action, pour des cycles plus courts et une plus grande productivité.
- Cabine et canopée ROPS, TOPS et FOPS, pour une meilleure sécurité de l’opérateur.
- Dimensions compactes. La contrepoids enveloppant protège le compartiment arrière contre tous les chocs.
- Deux vitesses de translation pour une plus grande mobilité sur les chantiers. (Sauf EC15B XR).
- Excellente facilité d’entretien grâce à un accès facile au compartiment moteur et au compartiment hydraulique.
Annexe 27 : Libellé des prix du projet de réouverture des tranchées drainantes ; partie génie civil, d’après BONNIOT M. (2009)

Libellé des prix

<table>
<thead>
<tr>
<th>Numéro des prix</th>
<th>Désignation des travaux</th>
<th>Prix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Installation, travaux préparatoires et repli de chantier comprenant :</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L’aménagement, l’ouverture de chantier, des accès et circulations, et prise en charge des dépenses y afférent (autorisations de passage, dégagement et nettoyage des emprises : abattage des arbres, billonnage des troncs, dessouchage, évacuation des rémanents, dépose de clôture)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La création d’un accès provisoire par décassage de la terre végétale, l’aménée et la mise en place de tout venant pour accès provisoire du chemin au site;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L’aménée de la pelle à chenille.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L’aménagement des emprises nécessaires à l’exécution des ouvrages (dessouchage).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La signalisation de chantier comprenant principalement une protection du site pour le soir et les week-ends.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L’évacuation, à l’issue du chantier, des matériels, matériaux en excès, déchets y compris souches et produits forestiers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La remise en état par décassage du tout venant et remise en place du tout venant au niveau de l’accès provisoire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La remise en état à l’identique, en fin de chantier, des ouvrages (chaussée, clôture, ramparte, etc.) démolis, détériorés ou démontés du fait des travaux ainsi que des terrains occupés ou traversées et la fermeture des accès.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Le repli de chantier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>530 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 €</td>
</tr>
<tr>
<td>2.0</td>
<td>Réouverture de la tranchée n°6 géocomposite Hydraway 2000 sur (2*2) mètres linéaires :</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Décapage préalable et stockage de la terre végétale.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prélèvements selon plan de situation à proximité de la tranchée et dans la tranchée par carottage (nombre de carottage : @u)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Isolement du tronçon à échantillonner par mise en place de palplanches avec ancrage latéral dans le sol de 50 cm minimum de part et d’autres.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ouverture latérale de la tranchée pour prélèvement. Le mode opératoire retenue devra tenir compte des règlements de la sécurité du travail en vigueur (profondeur supérieure à 1m30) : blindage et etaiement ou décaissement des parois en rapport avec les surcharges prévisibles et les caractéristiques locales du sol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prélèvement du géocomposite en place par une découpe soignée des laies. Cette découpe sera effectuée par un moyen minimisant les vibrations à soumettre. Toute découpe manuelle sera proscrite, on préférera utiliser une scie électrique par exemple afin d’obtenir une découpe propre. Il faudra veiller à minimiser les détériorations en vue de l’étude en laboratoire. Le prélèvement s’effectuera en retirant le tout venant constituant la tranchée au moyen du godet de la pelle. La présence obligatoire d’un manœuvre permettra le retrait avec le plus grand soin du tout venant dans les endroits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>580 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 €</td>
</tr>
</tbody>
</table>
en contact avec le géocomposite.

- Stockage de l’échantillon dans une zone délimitée sur le chantier isolé par une bâche plastique.
- Réparation soignée de la tranchée par l’aménée et la mise en place d’un nouveau géocomposite sur la longueur et la profondeur décaissée en respectant la continuité entre l’amont et l’aval par recouvrement ou liaison.
- Assemblage, selon le fournisseur des différentes laies du géocomposite.
- Remblaiement de la tranchée avec les matériaux extraits.
- Fermeture de la tranchée par remise en place de la terre végétale préalablement décapée sur environ 40 cm.

Réouverture de la tranchée n°2 Bidim b2 en partie supérieure sur (2*2) mètres linéaires :

- Prélèvements selon plan de situation à proximité de la tranchée et dans la tranchée par carottage (nombre de carottage : @u)
- Isolement du tronçon à échantillonner par mise en place de palplanches avec ancrage latéral dans le sol de 50 cm minimum de part et d’autres.
- Décapage préalable et stockage de la terre végétale avec un très grand soin. Sur cette tranchée, le Bidim est seulement présent proche de la surface, posé horizontalement.
- Découpe du Bidim en place avec soin sur longueur de l’échantillon : 2m. Il faudra veiller à minimiser les détériorations en vue de l’étude en laboratoire. (non sur ce tronçon, le retrait de la gravette se fait après retrait du géotextile en sommet)(Sur cette tranchée, le Bidim est seulement présent proche de la surface, posé horizontalement.)
- Prélèvement de la gravette constituant la tranchée et dépôt dans une zone délimitée sur chantier (avec isolation sur bâche plastique.)
- Dépôt et stockage de la gravette dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.
- Réparation de la tranchée par l’aménée et la mise en place de gravette lavée roulée de calibre équivalente et de la gravette stockée préalablement (?elle ne sera pas emportée pour analyse ?) et réparation éventuel du drain routier Ø160 si endommagé au cours du prélèvement
- Amené et mise en place sur la gravette d’un nouveau Bidim b2 ou équivalent sur la longueur décaissée en respectant la continuité entre l’amont et l’aval par recouvrement. (seul le recouvrement est effectif)
- Fermeture de la tranchée avec la terre végétale préalablement décapée sur environ 40 cm.
4.0 Réouverture de la tranchée n°3 Bidim b2 (comme tranchée 2 ?) en chaussette sur (2*2) mètres linéaires :

<table>
<thead>
<tr>
<th>Description</th>
<th>Coût</th>
</tr>
</thead>
<tbody>
<tr>
<td>Décapage préalable de la terre végétale.</td>
<td>400 €</td>
</tr>
<tr>
<td>Prélèvements selon schéma de principe à proximité de la tranchée et dans la tranchée par carottage (nombre de carottage : @u)</td>
<td>580 €</td>
</tr>
<tr>
<td>Isolement du tronçon à échantillonner par mise en place de palplanches avec ancrage latéral dans le sol de 50 cm minimum de part et d’autre.</td>
<td>250 €</td>
</tr>
<tr>
<td>Prélèvement de la gravette constituant la tranchée : Le prélèvement s’effectuera en retirant la gravette au moyen du godet de la pelle. La présence obligatoire d’un manœuvre permettra de retirer avec plus de soins la gravette dans les endroits en contact avec le géotextile.</td>
<td>150 €</td>
</tr>
<tr>
<td>Dépôt et stockage de la gravette dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.</td>
<td>1000 €</td>
</tr>
<tr>
<td>Ouverture latérale de la tranchée pour prélèvement. Le mode opératoire retenu devra tenir compte des règlements de la sécurité du travail en vigueur (profondeur supérieure à 1m30) : blindage et étalement ou décaissement des parois en rapport avec les surcharges prévisibles et les caractéristiques locales du sol.</td>
<td>500 €</td>
</tr>
<tr>
<td>Prélèvement latéral du Bidim b2 en chaussette en place avec soin. Il faudra veiller à minimiser les détériorations en vue de l’étude en laboratoire et stockage dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.</td>
<td>1350 €</td>
</tr>
<tr>
<td>Remise en fonction du réseau drainant par réparation de la tranchée : Amenée et mise en place dans la tranchée d’un nouveau géotextile type B2 ou équivalent en chaussette sur la longueur et la profondeur décaissée. Fourniture, amenée et mise en place de gravette lavée roulée de calibre équivalent.</td>
<td>200 €</td>
</tr>
<tr>
<td>Réparation du drain routier Ø160 si endommagé au cours du prélèvement</td>
<td>100 €</td>
</tr>
<tr>
<td>Remblaiement de la tranchée avec les matériaux extraits</td>
<td>200 €</td>
</tr>
<tr>
<td>Fermeture de la tranchée avec remise en place de la terre végétale préalablement décapée sur environ 40 cm.</td>
<td>1000 €</td>
</tr>
</tbody>
</table>

5.0 Réouverture de la tranchée n°4 Propex 6062 en chaussette sur (2*2) mètres linéaires :

<table>
<thead>
<tr>
<th>Description</th>
<th>Coût</th>
</tr>
</thead>
<tbody>
<tr>
<td>Décapage préalable de la terre végétale.</td>
<td>400 €</td>
</tr>
<tr>
<td>Prélèvements selon schéma de principe à proximité de la tranchée et dans la tranchée par carottage (nombre de carottage : @u)</td>
<td>580 €</td>
</tr>
<tr>
<td>Isolement du tronçon à échantillonner par mise en place de palplanches avec ancrage latéral dans le sol de 50 cm minimum de part et d’autre.</td>
<td>500 €</td>
</tr>
<tr>
<td>Prélèvement de la gravette constituant la tranchée : Le prélèvement s’effectuera en retirant la gravette au moyen du godet de la pelle. La présence obligatoire d’un manœuvre permettra de retirer avec plus de soins la gravette dans les endroits en contact avec le géotextile.</td>
<td>150 €</td>
</tr>
<tr>
<td>Dépôt et stockage de la gravette dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.</td>
<td>1000 €</td>
</tr>
<tr>
<td>Ouverture latérale de la tranchée pour prélèvement. Le mode opératoire retenu devra tenir compte des règlements de la sécurité du travail en vigueur (profondeur supérieure à 1m30) : blindage et étalement ou décaissement des parois en rapport avec les surcharges prévisibles et les caractéristiques locales du sol.</td>
<td>500 €</td>
</tr>
<tr>
<td>Prélèvement latéral du Propex 6062 en chaussette en place avec soin. Il faudra veiller à minimiser les détériorations en vue de l’étude en laboratoire, laboratoire et stockage dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.</td>
<td>1750 €</td>
</tr>
<tr>
<td>Remise en fonction du réseau drainant par réparation de la tranchée : Amenée et mise en place dans la tranchée d’un nouveau géotextile type Propex 6062 ou équivalent en chaussette sur la longueur et la profondeur décaissée. Fourniture, amenée et mise en place de gravette lavée roulée de calibre</td>
<td>500 €</td>
</tr>
<tr>
<td>Équivalent.</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Réparation du drain routier Ø160 si endommagé au cours du prélèvement</td>
<td></td>
</tr>
<tr>
<td>Remblaiement de la tranchée avec les matériaux extraits.</td>
<td></td>
</tr>
<tr>
<td>Fermeture de la tranchée avec remise en place de la terre végétale préalablement découpée sur environ 40 cm.</td>
<td></td>
</tr>
</tbody>
</table>

6.0 Réouverture de la tranchée n°5 Hate 43 144 en chaussette sur (2*2) mètres linéaires :

- Décapage préalable de la terre végétale.
- Prélèvements selon schéma de principe à proximité de la tranchée et dans la tranchée par carottage (nombre de carottage : @u)
- Isolation du tronçon à échantillonner par mise en place de palplanches avec ancrage latéral dans le sol de 50 cm minimum de part et d’autres.
- Prélèvement de la gravette constituant la tranchée : Le prélèvement s’effectuera en retirant la gravette au moyen du godet de la pelle. La présence obligatoire d’un manœuvre permettra de retirer avec plus de soins la gravette dans les endroits en contact avec le géotextile.
- Dépôt et stockage de la gravette dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.
- Ouverture latérale de la tranchée pour prélèvement. Le mode opératoire retenu devra tenir compte des règlements de la sécurité du travail en vigueur (profondeur supérieure à 1m30) : blindage et étaiement ou décaissement des parois en rapport avec les surcharges prévisibles et les caractéristiques locales du sol.
- Prélèvement latéral du Hate 43 144 en chaussette en place avec soin. Il faudra veiller à minimiser les détériorations en vue de l’étude en laboratoire et stockage dans une zone délimitée sur le chantier sur une surface étanche type bâche plastique.
- Remise en fonction du réseau drainant par réparation de la tranchée : Aménée et mise en place dans la tranchée d’un nouveau géotextile Hate 43 144 en chaussette sur la longueur et la profondeur décaissée. Fourniture, aménée et mise en place de gravette lavée roulée de calibre équivalent.
- Réparation du drain routier Ø160 si si endommagé au cours du prélèvement
- Remblaiement de la tranchée avec les matériaux extraits.
- Fermeture de la tranchée avec remise en place de la terre végétale préalablement découpée sur environ 40 cm.

TOTAL : 31 100,00 € arrondi à 35 000 € HT

4- Procédure d’essai

Une fois l’échantillon reconstitué et installé dans le dispositif d’essai, on procède au remplissage de ce dernier par les parties amont et aval simultanément. Une fois rempli, on débute l’essai par la mise en circulation de l’eau à travers le trou réalisé dans l’éprouvette.

L’essai est réalisé à débit constant. L’effluent est caractérisé par sa turbidité en terme d’Unité Néphèlométrique de Turbidité (NTU). L’acquisition des données se fait par un système d’acquisition Profibus.

Un échevelon de débit est imposé, à 500 kg/h. Si cette valeur est suffisamment importante pour provoquer une érosion, le trou est agrandi par érosion, ce qui provoque une diminution de la vitesse d’écoulement, donc de la contrainte d’érosion. A débit constant, cette érosion doit s’arrêter au bout d’un temps fini. La valeur du palier de débit est maintenue suffisamment longtemps pour que la turbidité soit redescendue à une valeur faible (<5 NTU), et pour que la pression différentielle soit devenu constant. La durée maximum est toutefois fixée à 6 h.

5- Méthode d’interprétation

Le modèle d’érosion est

\[\dot{m} = \begin{cases} 0 & \text{si } |\tau| \leq \tau_e \\ \rho_{w} \frac{dR}{dt} & \text{si } |\tau| > \tau_e \end{cases} \]

où \(\dot{m} \) (kg.m\(^{-2}\).s\(^{-1}\)) est le débit massique de matière érodée (particules-eau du sol) par unité de surface, \(\tau \) (Pa) est la contrainte tangentielle exercée par l’écoulement sur le sol, \(\tau_e \) (Pa) est la contrainte critique d’érosion, et \(\rho_{w} \) (s.m\(^{-3}\)) est le coefficient d’érosion. Le débit massique de matière érodée est défini par

\[\dot{m} = \rho_{h} \frac{dR}{dt} \]

où \(\rho_{h} \) (kg.m\(^{-3}\)) est la masse volumique humide du sol, et \(R \) (m) le rayon du trou, \(dR / dt \) étant la vitesse d’agrandissement du trou.

Ce modèle d’érosion est le même que celui utilisé par Robin Fell, qui s’écrit

\[\rho_{e} \frac{dR}{dt} = \begin{cases} 0 & \text{si } |\tau| \leq \tau_e \\ C_{e}(|\tau| - \tau_e) & \text{si } |\tau| > \tau_e \end{cases} \]

où \(\rho_{e} \) (kg.m\(^{-3}\)) est la masse volumique sèche du sol, et \(C_{e} \) (s.m\(^{-1}\)) est le coefficient d’érosion de Fell.

C’est également le même modèle que celui utilisé par Hanson, qui s’écrit

\[\frac{dR}{dt} = \begin{cases} 0 & \text{si } |\tau| \leq \tau_e \\ k_{d}(|\tau| - \tau_e) & \text{si } |\tau| > \tau_e \end{cases} \]

où \(k_{d} \) (s.m\(^{-1}\).kg\(^{-1}\) ou m\(^{-3}\).N\(^{-1}\).s\(^{-1}\)) est le coefficient d’érosion de Hanson.

La relation entre les trois coefficient d’érosion est

\[k_{d} (\text{s.m}^{-1} \text{kg}^{-1}) = \frac{C_{e} (\text{s.m})}{\rho_{d} (\text{kg.m}^{-3})} = \frac{k_{m} (\text{s.m})}{\rho_{h} (\text{kg.m}^{-3})} \]

où l’on a utilisé le fait que 1 N=1 kg.m.s\(^{-2}\) (1 kg=1 N.m\(^{-1}\).s\(^{-2}\)).

L’index d’érosion de Fell est défini par

\[I_{e} = -\log_{10}(C_{e} (\text{s.m})) \]
Annexe 29 : Evaluation des coûts des essais du projet de réouverture des tranchées drainantes

Tranchée 1

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Prix Unitaire</th>
<th>2 Prelevements</th>
<th>3 Prelevements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemagref Antony</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essai de perméabilité d’un géotextile</td>
<td>315.00 €</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Détermination des caractéristiques de perméabilité à l’eau normalement au plan, sans contrainte mécanique ; selon la norme NF EN ISO 11058)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouverture de filtration d’un géotextile</td>
<td>470.00 €</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(détermination de l’ouverture de filtration caractéristique; selon norme NF EN ISO 12959)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemagref Aix en Provence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeabilité au perméamètre</td>
<td>128.00 €</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hole Erosion Test (HET)</td>
<td>974.00 €</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essai de lavage de la grave</td>
<td>100.00 €</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>LTHE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essai de filtration sur colonne avec suite des gradients</td>
<td>150.00 €</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essai de filtration sur échantillon sol, géotextile, gravier, non remanié</td>
<td>150.00 €</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 600.00 €</td>
<td>2 826.00 €</td>
<td></td>
</tr>
</tbody>
</table>

Tranchée 2

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Prix Unitaire</th>
<th>2 Prelevements</th>
<th>3 Prelevements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemagref Antony</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essai de perméabilité d’un géotextile</td>
<td>315.00 €</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(détermination des caractéristiques de perméabilité à l’eau normalement au plan, sans contrainte mécanique ; selon la norme NF EN ISO 11058)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouverture de filtration d’un géotextile</td>
<td>470.00 €</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(détermination de l’ouverture de filtration caractéristique; selon norme NF EN ISO 12959)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemagref Aix en Provence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeabilité au perméamètre</td>
<td>128.00 €</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hole Erosion Test (HET)</td>
<td>974.00 €</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essai de lavage de la grave</td>
<td>100.00 €</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>LTHE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essai de filtration sur colonne avec suite des gradients</td>
<td>150.00 €</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essai de filtration sur échantillon sol, géotextile, gravier, non remanié</td>
<td>150.00 €</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3 170.00 €</td>
<td>4 181.00 €</td>
<td></td>
</tr>
<tr>
<td>Tranchée 3</td>
<td>Prix unitaire</td>
<td>2 prélèvements</td>
<td>3 prélèvements</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>nombre d'essais</td>
<td>prix</td>
<td>nombre d'essais</td>
</tr>
<tr>
<td>Camagref Antony</td>
<td>315.00 €</td>
<td>2</td>
<td>630.00 €</td>
</tr>
<tr>
<td>Essai de perméabilité d’un géotextile (détermination des caractéristiques de perméabilité à l'eau normalement au plan, sans contrainte mécanique; selon la norme NF EN ISO 11058)</td>
<td>470.00 €</td>
<td>2</td>
<td>940.00 €</td>
</tr>
<tr>
<td>Camagref Aix en Provence</td>
<td>126.00 €</td>
<td>1</td>
<td>126.00 €</td>
</tr>
<tr>
<td>Perméabilité au permamètre</td>
<td>974.00 €</td>
<td>1</td>
<td>974.00 €</td>
</tr>
<tr>
<td>Hole Erosion Test (HET)</td>
<td>100.00 €</td>
<td>2</td>
<td>200.00 €</td>
</tr>
<tr>
<td>LTHE</td>
<td>150.00 €</td>
<td>1</td>
<td>150.00 €</td>
</tr>
<tr>
<td>Essai de filtration sur colonne avec suivie des gradients</td>
<td>150.00 €</td>
<td>1</td>
<td>150.00 €</td>
</tr>
<tr>
<td>Essai de filtration sur échantillon sol, géotextile, gravier, non remanié</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3 170.00 €</td>
<td>4 181.00 €</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tranchée 4</th>
<th>Prix unitaire</th>
<th>2 prélèvements</th>
<th>3 prélèvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nombre d'essais</td>
<td>prix</td>
<td>nombre d'essais</td>
</tr>
<tr>
<td>Camagref Antony</td>
<td>315.00 €</td>
<td>2</td>
<td>630.00 €</td>
</tr>
<tr>
<td>Essai de perméabilité d’un géotextile (détermination des caractéristiques de perméabilité à l'eau normalement au plan, sans contrainte mécanique; selon la norme NF EN ISO 11058)</td>
<td>470.00 €</td>
<td>2</td>
<td>940.00 €</td>
</tr>
<tr>
<td>Camagref Aix en Provence</td>
<td>126.00 €</td>
<td>1</td>
<td>126.00 €</td>
</tr>
<tr>
<td>Perméabilité au permamètre</td>
<td>974.00 €</td>
<td>1</td>
<td>974.00 €</td>
</tr>
<tr>
<td>Hole Erosion Test (HET)</td>
<td>100.00 €</td>
<td>2</td>
<td>200.00 €</td>
</tr>
<tr>
<td>LTHE</td>
<td>150.00 €</td>
<td>1</td>
<td>150.00 €</td>
</tr>
<tr>
<td>Essai de filtration sur colonne avec suivie des gradients</td>
<td>150.00 €</td>
<td>1</td>
<td>150.00 €</td>
</tr>
<tr>
<td>Essai de filtration sur échantillon sol, géotextile, gravier, non remanié</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3 170.00 €</td>
<td>4 181.00 €</td>
<td></td>
</tr>
</tbody>
</table>
Projet Drainage – Phase I : Étude du vieillissement des géotextiles-filtres utilisés en tranchées drainantes, sur site experimental dans le Trièves - Annexes

Tranchée 5

<table>
<thead>
<tr>
<th>Ceramagref Antony</th>
<th>2 prélèvements</th>
<th>3 prélèvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nombre d'essais</td>
<td>prix</td>
</tr>
<tr>
<td>Étude de perméabilité d'un géotextile</td>
<td>2</td>
<td>630.00 €</td>
</tr>
<tr>
<td>(détermination des caractéristiques de perméabilité à l'eau normalement au plan, sans contrainte mécanique; selon la norme NF EN ISO 11055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouverture de filtration d'un géotextile</td>
<td>2</td>
<td>940.00 €</td>
</tr>
<tr>
<td>(détermination de l'ouverture de filtration caractéristique; selon norme NF EN ISO 12956)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramagref Aix en Provence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perméabilité au perméamètre</td>
<td>1</td>
<td>126.00 €</td>
</tr>
<tr>
<td>Hole Erosion Test (HET)</td>
<td>1</td>
<td>126.00 €</td>
</tr>
<tr>
<td>Essai de lavage de la grave</td>
<td>1</td>
<td>100.00 €</td>
</tr>
<tr>
<td>TOTAL Tranchée 5</td>
<td>3 170.00 €</td>
<td>4 181.00 €</td>
</tr>
</tbody>
</table>

Tranchée 6

<table>
<thead>
<tr>
<th>Ceramagref Antony</th>
<th>2 prélèvements</th>
<th>3 prélèvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nombre d'essais</td>
<td>prix</td>
</tr>
<tr>
<td>Étude de perméabilité d'un géotextile</td>
<td>2</td>
<td>630.00 €</td>
</tr>
<tr>
<td>(détermination des caractéristiques de perméabilité à l'eau normalement au plan, sans contrainte mécanique; selon la norme NF EN ISO 11055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouverture de filtration d'un géotextile</td>
<td>2</td>
<td>940.00 €</td>
</tr>
<tr>
<td>(détermination de l'ouverture de filtration caractéristique; selon norme NF EN ISO 12956)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramagref Aix en Provence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perméabilité au perméamètre</td>
<td>1</td>
<td>126.00 €</td>
</tr>
<tr>
<td>Hole Erosion Test (HET)</td>
<td>1</td>
<td>126.00 €</td>
</tr>
<tr>
<td>Essai de lavage de la grave</td>
<td>1</td>
<td>100.00 €</td>
</tr>
<tr>
<td>TOTAL Tranchée 6</td>
<td>3 170.00 €</td>
<td>4 181.00 €</td>
</tr>
</tbody>
</table>
Essais hors tranchées

<table>
<thead>
<tr>
<th>Description</th>
<th>Prix unitaire</th>
<th>Nombre d'essais</th>
<th>Détail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemagref Antony</td>
<td>315.00 €</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(détermination des caractéristiques de perméabilité à l'eau normalement au plan, sans contrainte mécanique; selon la norme NF EN ISO 11058)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemagref Aix en Provence</td>
<td>470.00 €</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(détermination de l'ouverture de filtration caractéristique; selon norme NF EN ISO 12956)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT&H</td>
<td>126.00 €</td>
<td>2</td>
<td>252.00 €</td>
</tr>
<tr>
<td>(Essai de filtration sur colonne avec suivi des gradients)</td>
<td>974.00 €</td>
<td>2</td>
<td>1 848.00 €</td>
</tr>
<tr>
<td>(Essai de filtration sur échantillon sol, géotextile, gravier, non remanié)</td>
<td>150.00 €</td>
<td>1</td>
<td>150.00 €</td>
</tr>
<tr>
<td>150.00 €</td>
<td>150.00 €</td>
<td>1</td>
<td>150.00 €</td>
</tr>
<tr>
<td>TOTAL HORUS TRANCHEES</td>
<td>2 500.00 €</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 prélèvements - 3 prélèvements

<table>
<thead>
<tr>
<th>Description</th>
<th>Prix total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 prélèvements</td>
<td>19 950.00 €</td>
</tr>
<tr>
<td>3 prélèvements</td>
<td>25 231.00 €</td>
</tr>
</tbody>
</table>
Annexe 30 : Courbes granulométriques de toutes les tranchées de juin 2009

Annexe 31 : Courbes granulométriques de toutes les tranchées de juillet 2009
Annexe 32 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 1

Annexe 33 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 2
Annexe 34 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 3

Annexe 35 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 4
Annexe 36 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 5

Annexe 37 : Comparaison des courbes granulométriques selon les périodes de mesure de la tranchée 6